login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that floor((3*k - 1)/2) is prime.
1

%I #30 Mar 10 2024 00:23:56

%S 2,4,5,8,9,12,13,16,20,21,25,28,29,32,36,40,41,45,48,49,53,56,60,65,

%T 68,69,72,73,76,85,88,92,93,100,101,105,109,112,116,120,121,128,129,

%U 132,133,141,149,152,153,156,160,161,168,172,176,180,181,185,188,189

%N Numbers k such that floor((3*k - 1)/2) is prime.

%C Numbers k such that A001651(k) is prime.

%C This sequence is infinite because values of the form floor((3*k-1)/2) include all primes except 3.

%H Iain Fox, <a href="/A296058/b296058.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = floor((2*prime(n+1) + 2)/3).

%F a(n) = A004523(A000040(n+1) + 1).

%e Floor((3*4 - 1)/2) = 5 is prime, so 4 is a term.

%e Floor((3*5 - 1)/2) = 7 is prime, so 5 is a term.

%e Floor((3*6 - 1)/2) = 8 is not prime, so 6 is not a term.

%t Select[Range[200], PrimeQ@ Floor[(3 # - 1)/2] &] (* or *)

%t Array[Floor[2 (Prime[# + 1] + 1)/3] &, 60] (* _Michael De Vlieger_, Dec 09 2017 *)

%o (PARI) is(n) = isprime(floor((3*n-1)/2))

%o (PARI) a(n) = floor((2*prime(n+1) + 2)/3)

%o (PARI) lista(nn) = forprime(p=3, nn, print1(floor((2*p + 2)/3), ", "))

%Y Characteristic function: A296028.

%Y Cf. A000040, A001651.

%K nonn

%O 1,1

%A _Iain Fox_, Dec 03 2017