%I #4 Dec 01 2017 15:35:14
%S 1,1,1,1,6,1,1,15,15,1,1,28,44,28,1,1,90,110,110,90,1,1,281,581,518,
%T 581,281,1,1,737,2354,3851,3851,2354,737,1,1,2095,8452,21577,62702,
%U 21577,8452,2095,1,1,6268,35474,124879,649470,649470,124879,35474,6268,1,1
%N T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 2 or 3 king-move neighboring 1s.
%C Table starts
%C .1....1......1.......1.........1...........1.............1...............1
%C .1....6.....15......28........90.........281...........737............2095
%C .1...15.....44.....110.......581........2354..........8452...........35474
%C .1...28....110.....518......3851.......21577........124879..........764482
%C .1...90....581....3851.....62702......649470.......6388097........74040837
%C .1..281...2354...21577....649470....10239175.....153675314......2926105110
%C .1..737...8452..124879...6388097...153675314....3710803701....113097325063
%C .1.2095..35474..764482..74040837..2926105110..113097325063...5908904429141
%C .1.6268.146560.4511480.809517928.50497979952.3060234284708.267611417815233
%H R. H. Hardin, <a href="/A295985/b295985.txt">Table of n, a(n) for n = 1..219</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: a(n) = 3*a(n-1) -2*a(n-2) +9*a(n-3) -10*a(n-4) -4*a(n-5) -4*a(n-6)
%F k=3: [order 10]
%F k=4: [order 27]
%F k=5: [order 67]
%e Some solutions for n=5 k=4
%e ..0..1..0..0. .1..1..0..1. .0..0..0..1. .1..1..0..0. .1..1..1..1
%e ..1..1..0..0. .1..0..1..1. .1..1..1..1. .1..0..1..0. .1..0..0..1
%e ..0..0..1..0. .0..0..0..0. .1..0..0..0. .1..0..1..0. .0..0..1..0
%e ..0..1..1..0. .0..1..1..0. .0..1..0..0. .1..0..0..1. .0..1..1..0
%e ..0..0..0..0. .0..1..0..0. .0..1..1..0. .1..1..1..0. .0..1..0..0
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_, Dec 01 2017