login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 1 or 3 king-move neighboring 1s.
8

%I #4 Nov 30 2017 06:26:18

%S 1,2,2,3,8,3,4,15,15,4,6,33,41,33,6,9,104,120,120,104,9,13,228,465,

%T 534,465,228,13,19,529,1472,2976,2976,1472,529,19,28,1469,4667,13759,

%U 29081,13759,4667,1469,28,41,3442,16230,65009,187960,187960,65009,16230,3442

%N T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 1 or 3 king-move neighboring 1s.

%C Table starts

%C ..1....2.....3.......4........6..........9..........13............19

%C ..2....8....15......33......104........228.........529..........1469

%C ..3...15....41.....120......465.......1472........4667.........16230

%C ..4...33...120.....534.....2976......13759.......65009........325008

%C ..6..104...465....2976....29081.....187960.....1311947......10551008

%C ..9..228..1472...13759...187960....1806751....18443146.....209884397

%C .13..529..4667...65009..1311947...18443146...279143247....4651767361

%C .19.1469.16230..325008.10551008..209884397..4651767361..117889600265

%C .28.3442.53266.1565481.75078015.2194039726.71601077879.2659460386138

%H R. H. Hardin, <a href="/A295943/b295943.txt">Table of n, a(n) for n = 1..241</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +a(n-3)

%F k=2: a(n) = a(n-1) +a(n-2) +9*a(n-3) -4*a(n-4) -4*a(n-5) -4*a(n-6)

%F k=3: [order 9]

%F k=4: [order 21]

%F k=5: [order 55]

%e Some solutions for n=5 k=4

%e ..1..0..0..0. .1..0..0..0. .1..1..0..1. .0..1..0..0. .1..0..0..0

%e ..0..1..1..1. .1..0..0..0. .1..1..0..1. .1..0..0..0. .1..0..0..1

%e ..0..1..0..0. .0..0..1..0. .0..0..0..0. .0..0..1..1. .0..0..0..1

%e ..1..0..0..1. .0..0..1..0. .0..0..0..0. .0..0..0..0. .0..1..0..0

%e ..0..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..1..1. .0..1..0..0

%Y Column 1 is A000930(n+1).

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_, Nov 30 2017