login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X 4 0..1 arrays with each 1 adjacent to 1 or 3 king-move neighboring 1's.
1

%I #11 Dec 01 2017 03:00:29

%S 4,33,120,534,2976,13759,65009,325008,1565481,7539236,36795842,

%T 178342390,863486059,4193371665,20339714386,98614688025,478433693926,

%U 2320695414662,11255335524904,54595627967873,264817091402701,1284455883761926

%N Number of n X 4 0..1 arrays with each 1 adjacent to 1 or 3 king-move neighboring 1's.

%C Column 4 of A295943.

%H R. H. Hardin, <a href="/A295939/b295939.txt">Table of n, a(n) for n = 1..210</a>

%H Robert Israel, <a href="/A295939/a295939.pdf">Maple-assisted proof of formula</a>

%F Empirical: a(n) = 2*a(n-1) + 5*a(n-2) + 52*a(n-3) - 12*a(n-4) - 55*a(n-5) - 505*a(n-6) - 34*a(n-7) - 70*a(n-8) + 1673*a(n-9) + 259*a(n-10) + 938*a(n-11) - 1632*a(n-12) + 663*a(n-13) - 899*a(n-14) + 985*a(n-15) - 542*a(n-16) + 19*a(n-17) + 89*a(n-18) - 104*a(n-19) + 7*a(n-20) - 14*a(n-21).

%F Empirical formula confirmed by _Robert Israel_, Nov 30 2017 (see link).

%e Some solutions for n=7:

%e 0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0

%e 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0

%e 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

%e 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

%e 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0

%e 1 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0

%e 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0

%Y Cf. A295943.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 30 2017