login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (not necessarily maximal) cliques in the n-Sierpinski carpet graph.
0

%I #6 Dec 28 2022 10:36:58

%S 17,153,1289,10521,84809,680409,5449097,43610265,348934601,2791634265,

%T 22333546505,178669789209,1429362565193,11434913276121,91479344472713,

%U 731834870572953,5854679308957385,46837435504780377,374699487137606921,2997595906398947097,23980767279085851977

%N Number of (not necessarily maximal) cliques in the n-Sierpinski carpet graph.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Clique.html">Clique</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiCarpetGraph.html">Sierpinski Carpet Graph</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (12, -35, 24).

%F a(n) = (13*8^n - 8*3^n + 5)/5.

%F a(n) = 12*a(n-1) - 35*a(n-2) + 24*a(n-3).

%F G.f.: x*(-17 + 51*x - 48*x^2)/(-1 + 12*x - 35*x^2 + 24*x^3).

%t Table[(13 8^n - 8 3^n + 5)/5, {n, 10}]

%t LinearRecurrence[{12, -35, 24}, {17, 153, 1289}, 20]

%t CoefficientList[Series[(-17 + 51 x - 48 x^2)/(-1 + 12 x - 35 x^2 + 24 x^3), {x, 0, 20}], x]

%K nonn,easy

%O 1,1

%A _Eric W. Weisstein_, Nov 29 2017