Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #18 Jun 03 2018 08:37:35
%S 1,-6,-41652,-11504904,-4378103178,-1652544433080,-700184843900712,
%T -302796005909941632,-136251754253507319300,-62421509259448987324542,
%U -29147951871527035454309160,-13787807362002100397282325912
%N Coefficients in expansion of (E_10/E_2^10)^(1/4).
%H Seiichi Manyama, <a href="/A295788/b295788.txt">Table of n, a(n) for n = 0..367</a>
%F a(n) ~ -Pi^4 * exp(2*Pi*n) / (3^(7/4) * 2^(15/4) * Gamma(3/4)^7 * n^(5/4)). - _Vaclav Kotesovec_, Jun 03 2018
%t terms = 12;
%t E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
%t E10[x_] = 1 - 264*Sum[k^9*x^k/(1 - x^k), {k, 1, terms}];
%t (E10[x]/E2[x]^10)^(1/4) + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 26 2018 *)
%Y Cf. A110150, A294976, A294978, A299712.
%K sign
%O 0,2
%A _Seiichi Manyama_, Feb 13 2018