%I #19 Aug 08 2023 05:49:12
%S 1,1,1,4,1,8,1,14,72,1,20,22,584,1,62,32,4016,1,132,16880,44,45696,
%T 276,24656,1,336,413484,58,11323440,1006,140624,1,688,9044404,74,
%U 2384871120,3610,2480304,761960,1,35281856,1578,68984506112,4324,183901520,92,446907448224,12010,677849536,3976704,1,2683205048,3190,93749829120
%N a(n) = A173675(A025487(n)).
%C Terms in A173675 are only determined by their prime signature. A025487 gives the least positive integer having its prime signature. Combining these sequences removes a lot of duplicates making it somewhat easier to show terms.
%C a(54) = A284673(5) = 93749829120. - _Andrew Howroyd_, Oct 26 2019
%C Many terms from Kloczkowski & Jernigan's Table IV (which has A003752 as a column) show up in the Data section of this sequence. For the (partial) explanation of that, see Andrew Howroyd's comment in A173675. - _Andrey Zabolotskiy_, Aug 07 2023
%H David A. Corneth, <a href="/A295786/a295786.txt">Prime signatures for some k and the corresponding values for A173675(k).</a>
%H A. Kloczkowski and R. L. Jernigan, <a href="https://doi.org/10.1063/1.477129">Transfer matrix method for enumeration and generation of compact self-avoiding walks. II. Cubic lattice</a>, J. Chem. Phys., 109 (1998), 5147-5159.
%Y Cf. A025487, A173675.
%K nonn
%O 1,4
%A _David A. Corneth_, Dec 25 2017
%E Terms a(29) and beyond from _Andrew Howroyd_, Oct 26 2019