login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = Sum_{n>=0} binomial(n*(n+1),n)/(n+1) * x^n/A(x)^n.
4

%I #20 Mar 18 2024 05:13:18

%S 1,1,4,42,744,18570,596929,23457763,1089601420,58424516424,

%T 3553205095552,241765128267597,18202737707568180,1502857964050898494,

%U 135033771405912550765,13119213786776385900734,1370572549521961522812200,153224265349198540163190599,18253426026439076436840194131,2308479498698233016622014842489

%N G.f. satisfies: A(x) = Sum_{n>=0} binomial(n*(n+1),n)/(n+1) * x^n/A(x)^n.

%H Paul D. Hanna, <a href="/A295763/b295763.txt">Table of n, a(n) for n = 0..300</a>

%F G.f. A(x) satisfies: [x^n] A(x)^(n+1) = binomial(n*(n+1),n) for n>=0.

%F a(n) ~ c * exp(n) * n^(n - 3/2), where c = exp(1/2 - exp(-2)) / sqrt(2*Pi) = 0.5744892944370457395619... - _Vaclav Kotesovec_, Oct 17 2020, updated Mar 18 2024

%e G.f.: A(x) = 1 + x + 4*x^2 + 42*x^3 + 744*x^4 + 18570*x^5 + 596929*x^6 + 23457763*x^7 + 1089601420*x^8 + 58424516424*x^9 + 3553205095552*x^10 +...

%e such that

%e A(x) = 1 + x/A(x) + 5*(x/A(x))^2 + 55*(x/A(x))^3 + 969*(x/A(x))^4 + 23751*(x/A(x))^5 + 749398*(x/A(x))^6 +...+ binomial(n*(n+1),n)/(n+1)*(x/A(x))^n +...

%e The table of coefficients of x^k in A(x)^(n+1) begins:

%e [1, 1, 4, 42, 744, 18570, 596929, 23457763, 1089601420, ...];

%e [1, 2, 9, 92, 1588, 38964, 1238714, 48320440, 2233007214, ...];

%e [1, 3, 15, 151, 2544, 61356, 1928659, 74668905, 3432698217, ...];

%e [1, 4, 22, 220, 3625, 85936, 2670332, 102589280, 4691284160, ...];

%e [1, 5, 30, 300, 4845, 112911, 3467585, 132173305, 6011511390, ...];

%e [1, 6, 39, 392, 6219, 142506, 4324575, 163518732, 7396271082, ...];

%e [1, 7, 49, 497, 7763, 174965, 5245786, 196729744, 8848607971, ...];

%e [1, 8, 60, 616, 9494, 210552, 6236052, 231917400, 10371729633, ...];

%e [1, 9, 72, 750, 11430, 249552, 7300581, 269200107, 11969016345, ...]; ...

%e in which the main diagonal begins:

%e [1, 2, 15, 220, 4845, 142506, 5245786, ..., binomial(n*(n+1),n), ...],

%e thus [x^n] A(x)^(n+1) = [x^n] (1 + x)^(n*(n+1)) for n>=0.

%t terms = 20; A[_] = 1; Do[A[x_] = Sum[Binomial[n*(n+1), n]/(n+1)*x^n/A[x]^n, {n, 0, terms}] + O[x]^terms // Normal, terms];

%t CoefficientList[A[x], x] (* _Jean-François Alcover_, Jan 14 2018 *)

%o (PARI) {a(n) = my(A=[1]); for(m=1,n, A = concat(A,0); V = Vec( Ser(A)^(m+1) ); A[m+1] = (binomial(m*(m+1),m) - V[m+1])/(m+1);); A[n+1]}

%o for(n=0,20,print1(a(n),", "))

%Y cf. A295764, A295765, A135861, A135860.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 06 2018