Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jan 04 2024 19:12:24
%S 6,60,648,6000,64800,466560,6637344,58752000,648646704,5890320000,
%T 66663457344,461894400000,6458084523072,60339430569600,
%U 610154104320000,5529599115264000,66666634474902192,441994921381739520,6666666666666666660,58301444908800000000
%N a(n) = phi(10^n-1), where phi is Euler's totient function (A000010).
%H Max Alekseyev, <a href="/A295503/b295503.txt">Table of n, a(n) for n = 1..352</a>
%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/TotientFunction.html">MathWorld: Totient Function</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Euler%27s_phi_function">Euler's totient function</a>
%F a(n) = n*A295497(n).
%F a(n) = A000010(A002283(n)). - _Michel Marcus_, Nov 25 2017
%t Array[ EulerPhi[10^# - 1] &, 20] (* _Robert G. Wilson v_, Nov 22 2017 *)
%o (PARI) {a(n) = eulerphi(10^n-1)}
%Y phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), this sequence (k=10), A366685 (k=11), A366711 (k=12).
%Y Cf. A000010, A002283.
%K nonn
%O 1,1
%A _Seiichi Manyama_, Nov 22 2017