login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = phi(4^n-1), where phi is Euler's totient function (A000010).
16

%I #32 Jun 17 2024 15:25:53

%S 2,8,36,128,600,1728,10584,32768,139968,480000,2640704,6635520,

%T 44717400,132765696,534600000,2147483648,11452896600,26121388032,

%U 183250539864,473702400000,2427720325632,8834232287232,45914084232320,109586090557440,656100000000000

%N a(n) = phi(4^n-1), where phi is Euler's totient function (A000010).

%H Max Alekseyev, <a href="/A295501/b295501.txt">Table of n, a(n) for n = 1..1122</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotientFunction.html">Totient Function</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Euler%27s_phi_function">Euler's totient function</a>.

%F a(n) = n*A027695(n).

%F a(n) = A053287(2*n) = A053285(n) * A053287(n). - _Max Alekseyev_, Jan 07 2024

%t EulerPhi[4^Range[30] - 1] (* _Paolo Xausa_, Jun 17 2024 *)

%o (PARI) {a(n) = eulerphi(4^n-1)}

%Y Cf. A000010, A053285.

%Y phi(k^n-1): A053287 (k=2), A295500 (k=3), this sequence (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

%Y Cf. A366602, A366603, A366604, A366608.

%K nonn

%O 1,1

%A _Seiichi Manyama_, Nov 22 2017