Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Mar 08 2018 03:12:27
%S 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,
%T 97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,
%U 181,191,193,197,199,210,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,330,331
%N a(n) = smallest number > a(n-1) such that the number of preceding terms in the sequence dividing a(n) is divisible by 4; a(1) = 2.
%C First differs from A000040 at a(47)=210.
%e 3 is in the sequence because no preceding terms (i.e., 0 terms) divide it and 0 is divisible by 4.
%e 4 is not in the sequence because there is only 1 term (i.e., a(1) = 2) that divides it and 1 is not divisible by 4.
%t With[{k = 4}, Nest[Append[#, SelectFirst[Range[#[[-1]] + 1, #[[-1]] + 120], Function[n, Divisible[Count[#, _?(Divisible[n, #] &)], k]]]] &, {2}, 68]] (* _Michael De Vlieger_, Feb 15 2018 *)
%o (Python)
%o import math
%o def getSeq(n):
%o ....if n == 1:
%o ........return [2]
%o ....prev = getSeq(n-1)
%o ....cand = max(prev)
%o ....while True:
%o ........cand += 1
%o ........if len( [n for n in prev if cand % n == 0] ) % 4 == 0:
%o ............prev.append(cand)
%o ............return prev
%o print(getSeq(100))
%o (PARI) isok(k, va, nb) = (sum(j=1, nb, !(k % va[j])) % 4) == 0;
%o lista(nn) = {va = vector(nn); va[1] = 2; for (n=2, nn, k = va[n-1]+1; while (! isok(k, va, n-1), k++); va[n] = k;); va;} \\ _Michel Marcus_, Mar 01 2018
%Y Subsequence of A005117.
%Y Cf. A000040, A030059.
%K nonn,easy
%O 1,1
%A _Masahiko Shin_, Feb 12 2018