login
Maximum number of lattice points inside and on a circle of radius n.
3

%I #32 Dec 27 2017 02:02:26

%S 1,5,14,32,52,81,116,157,208,258,319,384,457,540,623,716,812,914,1025,

%T 1142,1268,1396,1528,1669,1816,1976,2131,2300,2472,2650,2836,3028,

%U 3228,3436,3644,3859,4080,4314,4548,4792,5038,5289,5555,5818,6092,6376,6668,6952

%N Maximum number of lattice points inside and on a circle of radius n.

%C Maximum number of lattice points (i.e., points with integer coordinates) in the plane that can be covered by a circle of radius n.

%C a(n) >= A000328(n).

%C Conjecture: sequence contains infinitely many terms that are divisible by 4.

%D B. R. Srinivasan, Lattice Points in a Circle, Proc. Nat. Inst. Sci. India, Part A, 29 (1963), pp. 332-346.

%F a(n) = Pi*n^2 + O(n), as n goes to infinity.

%F a(n) = A123690(2*n) for n >= 1.

%e For a circle centered at the point (x, y) = (1/2, 1/4) with radius 2, there are 14 lattice points inside and on the circle.

%e .

%e . Center # Pts in/

%e . x y Radius on circle

%e . ----- ----- ------ ---------

%e . 0 0 1 5

%e . 1/2 1/4 2 14

%e . 1/2 1/2 3 32

%e . 1/2 1/2 4 52

%e . 0 0 5 81

%e . 1/2 1/3 6 116

%e . 2/5 1/5 7 157

%e . 1/2 1/2 8 208

%e . 1/2 2/9 9 258

%e . 20/47 19/56 10 319

%e . 1/2 1/2 11 384

%e . 11/23 7/20 12 457

%e . 1/2 1/2 13 540

%e . 10/21 3/13 14 623

%e . 1/2 1/2 15 716

%e . 1/2 1/2 16 812

%e . 2/5 2/5 17 914

%e . 3/8 5/14 18 1025

%e . 1/2 1/6 19 1142

%e . 9/19 8/17 20 1268

%o (PARI) L=List([]); for(n=0, 47, if(n>0, j=5, j=1); g=0; h=0; f=ceil(Pi*n^2); for(d=2, floor(f/2), for(c=1, floor(d/2), if(gcd(c, d)==1, for(e=d, d+1, if(e/f<=1/2, a=c/d; b=e/f; if(a+b>=1/2, t=0; for(x=-n, n+1, for(y=-n, n+1, z=(a-x)^2+(b-y)^2; if(z<=n^2,t++))); if(t>j, j=t; if(a>=b, g=a; h=b, g=b; h=a)))))))); print("a("n") = "j", the center of the circle is at point ("g", "h")."); listput(L, j)); print(); print(Vec(L));

%Y Cf. A000328, A123690, A291259.

%K nonn

%O 0,2

%A _Arkadiusz Wesolowski_, Nov 20 2017

%E a(10) corrected by _Giovanni Resta_, Nov 24 2017