login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of continued fraction convergents to sqrt(10)/2 = sqrt(5/2) = A020797 + 1.
3

%I #18 Jun 04 2019 11:51:52

%S 1,2,3,8,11,19,49,68,117,302,419,721,1861,2582,4443,11468,15911,27379,

%T 70669,98048,168717,435482,604199,1039681,2683561,3723242,6406803,

%U 16536848,22943651,39480499,101904649,141385148,243289797,627964742,871254539,1499219281,3869693101,5368912382,9238605483

%N Numerators of continued fraction convergents to sqrt(10)/2 = sqrt(5/2) = A020797 + 1.

%C The denominators are given in A295334.

%C The regular continued fraction expansion of sqrt(10)/2 is [1, repeat(1, 1, 2)].

%H Robert Israel, <a href="/A295333/b295333.txt">Table of n, a(n) for n = 0..3794</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,6,0,0,1).

%F G.f.: G(x) = (1 + 2*x + 3*x^2 + 2*x^3 - x^4 + x^5)/(1 - 6*x^3 - x^6). From the recurrence a(n) = b(n)*a(n-1) + a(n-2), with the trisection b(3*(k+1)) = 2, b(3*k+1) = 1 = b(3*k+2), k >= 0, b(0) = 1, and the input a(0) = 1 = a(-1). With G_j(x) = Sum_{k>=0} a(3*k+j)*x^k, for j = 0,1,2, one finds (omitting here the G_j arguments) G_0 = 1 + 2*x*G_2 + x*G_1, G_1 = G_0 + 1 + x*G_2, G_2 = G_1 + G_0. This can be solved and leads to the given formula for G(x) = Sum_{j=0..2} x^j*G_j(x^3).

%F a(n) = 6*a(n-3) + a(n-6), for n >= 6, with inputs a(0)..a(5).

%e The convergents a(n)/A295334(n) begin: 1, 2, 3/2, 8/5, 11/7, 19/12, 49/31, 68/43, 117/74, 302/191, 419/265, 721/456, 1861/1177, 2582/1633, 4443/2810, 11468/7253, 15911/10063, 27379/17316, 70669/44695, 98048/62011, ...

%p numtheory:-cfrac(sqrt(5/2),100,'con'):

%p map(numer,con[1..-2]); # _Robert Israel_, Nov 22 2017

%t Numerator[Convergents[Sqrt[5/2], 50]] (* _Vaclav Kotesovec_, Nov 22 2017 *)

%t LinearRecurrence[{0,0,6,0,0,1},{1,2,3,8,11,19},40] (* _Harvey P. Dale_, Apr 08 2019 *)

%Y Cf. A020797, A295334.

%K nonn,frac,cofr,easy

%O 0,2

%A _Wolfdieter Lang_, Nov 21 2017