login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. 1/(1 - x*exp(x)/(1 - 2*x*exp(2*x)/(1 - 3*x*exp(3*x)/(1 - 4*x*exp(4*x)/(1 - ...))))), a continued fraction.
3

%I #7 Aug 09 2021 04:37:08

%S 1,1,8,141,4588,238785,18187146,1907650213,263668859560,

%T 46443551748129,10155810113182990,2699369066774377701,

%U 857103398097311042316,320421972956640538172449,139308015910536411839444194,69693570411751759009119119685,39753354051615620993914808710096

%N Expansion of e.g.f. 1/(1 - x*exp(x)/(1 - 2*x*exp(2*x)/(1 - 3*x*exp(3*x)/(1 - 4*x*exp(4*x)/(1 - ...))))), a continued fraction.

%H Vaclav Kotesovec, <a href="/A295242/b295242.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) ~ c * d^n * n^(2*n + 1/2) / exp(2*n), where d = 2.299007884747807311341155634117203393915283915595348... and c = 3.800670014949659244559370644121796775146171755... - _Vaclav Kotesovec_, Aug 09 2021

%t nmax = 16; CoefficientList[Series[1/(1 + ContinuedFractionK[-k x Exp[k x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!

%Y Cf. A295240, A295241.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Nov 18 2017