Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Oct 30 2024 10:27:33
%S 1,1,6,57,796,14785,344046,9640225,316255416,11896233345,504918768250,
%T 23874754106401,1244712973780068,70940791877082049,
%U 4388291507415513894,292823509879910802465,20966854494419642792176,1603540841320336494905089,130464295561360336835272050
%N Expansion of e.g.f. 2/(1 + sqrt(1 - 4*x*exp(x))).
%C Inverse binomial transform of A194471.
%H Seiichi Manyama, <a href="/A295238/b295238.txt">Table of n, a(n) for n = 0..356</a>
%F E.g.f.: 1/(1 - x*exp(x)/(1 - x*exp(x)/(1 - x*exp(x)/(1 - x*exp(x)/(1 - ...))))), a continued fraction.
%F a(n) ~ sqrt(2*(1 + LambertW(1/4))) * n^(n-1) / ((LambertW(1/4))^n * exp(n)). - _Vaclav Kotesovec_, Nov 18 2017
%F a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(2*k+1,k)/( (2*k+1)*(n-k)! ) = n! * Sum_{k=0..n} k^(n-k) * A000108(k)/(n-k)!. - _Seiichi Manyama_, Aug 15 2023
%p a:=series(2/(1+sqrt(1-4*x*exp(x))),x=0,19): seq(n!*coeff(a,x,n),n=0..18); # _Paolo P. Lava_, Mar 27 2019
%t nmax = 18; CoefficientList[Series[2/(1 + Sqrt[1 - 4 x Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!
%t nmax = 18; CoefficientList[Series[1/(1 + ContinuedFractionK[-x Exp[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
%t Table[Sum[(-1)^(n - k) Binomial[n, k] k! Sum[(m + 1)^(k - m - 1) Binomial[2 m, m]/(k - m)!, {m, 0, k}], {k, 0, n}], {n, 0, 18}]
%o (PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*k, k)/((k+1)*(n-k)!)); \\ _Seiichi Manyama_, Aug 15 2023
%Y Cf. A000108, A006531, A052895, A194471, A213644, A295239.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Nov 18 2017