Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Nov 16 2017 17:19:50
%S 1,1,5,15,44,115,312,790,2004,4908,11885,28170,65987,152079,346560,
%T 779808,1736460,3825995,8351733,18064545,38747740,82443251,174096564,
%U 364991008,759989218,1572126699,3231929735,6604498620,13419469596,27117216441,54508611399,109013531864,216956853105
%N Expansion of Product_{k>=1} 1/(1 - x^k)^(3*k*(k-1)/2+1).
%C Euler transform of the centered triangular numbers (A005448).
%H Vaclav Kotesovec, <a href="/A295179/b295179.txt">Table of n, a(n) for n = 0..4000</a>
%H M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CenteredTriangularNumber.html">Centered Triangular Number</a>
%H <a href="/index/Ce#CENTRALCUBE">Index entries for sequences related to centered polygonal numbers</a>
%F G.f.: Product_{k>=1} 1/(1 - x^k)^A005448(k).
%F a(n) ~ exp(-3*Zeta'(-1)/2 + 7*Zeta(3) / (8*Pi^2) - 225*Zeta(3)^3 / (2*Pi^8) + (Pi / (3*2^(3/4)) - 45*Zeta(3)^2 / (2^(7/4) * Pi^5)) * (5*n)^(1/4) - (3*sqrt(5/2) * Zeta(3) / Pi^2) * sqrt(n) + (2^(7/4)*Pi / (3*5^(1/4))) * n^(3/4)) / (2^(71/32) * 5^(7/32) * Pi^(1/8) * n^(23/32)). - _Vaclav Kotesovec_, Nov 16 2017
%t nmax = 32; CoefficientList[Series[Product[1/(1 - x^k)^(3 k (k - 1)/2 + 1), {k, 1, nmax}], {x, 0, nmax}], x]
%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (3 d (d - 1)/2 + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]
%Y Cf. A000294, A000335, A005448, A295180.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Nov 16 2017