login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Chromatic invariant of the n-crown graph.
1

%I #12 Apr 23 2018 10:31:56

%S 1,11,328,16369,1181276,116093641,14916610346,2428960220241,

%T 489039354264712,119323954705155265,34701518665828422926,

%U 11861024763916090258105,4708209994260510940754540,2148158302978435764574475817,1116465105383647067485461486754

%N Chromatic invariant of the n-crown graph.

%H Andrew Howroyd, <a href="/A295171/b295171.txt">Table of n, a(n) for n = 3..100</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChromaticInvariant.html">Chromatic Invariant</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CrownGraph.html">Crown Graph</a>

%F a(n) = Sum_{k=2..2*n} Sum_{j=0..n} Sum_{i=0..k-j} (-1)^k*(k-2)!*binomial(n, j)*Stirling2(n-j, i)*Stirling2(n-j, k-j-i). - _Andrew Howroyd_, Apr 22 2018

%t Table[Sum[(-1)^k (k - 2)! Binomial[n, j] StirlingS2[n - j, i] StirlingS2[n - j, k - j - i], {k, 2, 2 n}, {j, 0, n}, {i, 0, k - j}], {n, 3, 20}] (* _Eric W. Weisstein_, Apr 23 2018 *)

%o (PARI) a(n)={sum(k=2, 2*n, (-1)^k*(k-2)!*sum(j=0, min(n,k), binomial(n, j)*sum(i=0, k-j, stirling(n-j, i, 2)*stirling(n-j, k-j-i, 2))))} \\ _Andrew Howroyd_, Apr 22 2018

%K nonn

%O 3,2

%A _Eric W. Weisstein_, Nov 16 2017

%E Terms a(10) and beyond from _Andrew Howroyd_, Apr 22 2018