%I
%S 74,93,97,111
%N Numbers that have exactly ten representations as a sum of five nonnegative squares.
%C This sequence is finite and complete. See the von Eitzen Link. For positive integer n, if n > 7845 then the number of ways to write n as a sum of 5 squares is at least 11. So for n > 7845, there are more than nine ways to write n as a sum of 5 squares. For n <= 7845, it has been verified if n is in the sequence by inspection. Hence the sequence is complete.
%D E. Grosswald, Representations of Integers as Sums of Squares. SpringerVerlag, New York, 1985, p. 86, Theorem 1.
%H H. von Eitzen, in reply to user James47, <a href="http://math.stackexchange.com/questions/811824/whatisthelargestintegerwithonlyonerepresentationasasumoffivenonzer">What is the largest integer with only one representation as a sum of five nonzero squares?</a> on stackexchange.com, May 2014
%H D. H. Lehmer, <a href="http://www.jstor.org/stable/2305380">On the Partition of Numbers into Squares</a>, The American Mathematical Monthly, Vol. 55, No. 8, October 1948, pp. 476481.
%Y Cf. A000174, A006431, A294675.
%K nonn,fini,full
%O 1,1
%A _Robert Price_, Nov 15 2017
