%I #9 Nov 14 2017 03:07:13
%S 729,2197,4096,4913,6859,9261,19683,21952,24389,29791,35937,39304,
%T 59319,68921,79507,91125,97336,110592,117649,185193,195112,205379,
%U 226981,287496,328509,357911,389017,438976,493039,592704,704969,729000,912673,941192,970299,1092727,1191016
%N Cubes whose largest digit is 9.
%C For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., those without trailing '0'.
%F a(n) = A294999(n)^3.
%e 2197 is in the sequence because it is a cube, 2197 = 13^3, and its largest digit is 9.
%o (PARI) for(n=1,150, vecmax(digits(n^3))==8 &&print1(n^3,","))
%Y Cf. A294999 (the corresponding cube roots), A278936, A294663, A295025, A295021, A295022, A295023 (same for digit 3 .. 8), A295019 (same for squares).
%Y Cf. A000578 (the cubes).
%K nonn,base
%O 1,1
%A _M. F. Hasler_, Nov 13 2017