%I #7 Nov 13 2017 22:14:15
%S 8,1728,5832,8000,10648,13824,32768,42875,54872,74088,85184,103823,
%T 140608,148877,238328,373248,421875,551368,571787,658503,681472,
%U 778688,804357,830584,857375,884736,1061208,1124864,1481544,1520875,1728000,1815848,1860867,2048383,2628072,2803221
%N Cubes whose largest digit is 8.
%C For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. We could call "primitive" the terms not of this form, i.e., those without trailing '0'.
%F a(n) = A294998(n)^3.
%e 8 is in the sequence because it is a cube, 8 = 2^3, and its largest digit is 8.
%o (PARI) for(n=1,200, vecmax(digits(n^3))==8 &&print1(n^3,","))
%Y Cf. A294998 (the corresponding cube roots), A278936, A294663, A295025, A295021, A295022, A295024 (same for digit 3 .. 9), A295018 (same for squares).
%Y Cf. A000578 (the cubes).
%K nonn,base
%O 1,1
%A _M. F. Hasler_, Nov 13 2017