login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 + x^k)^(k*((k-2)^2+k)/2).
2

%I #9 Nov 14 2017 03:18:10

%S 1,1,2,8,23,64,160,397,968,2372,5714,13617,32007,74396,171222,390629,

%T 883922,1984631,4423528,9790146,21524829,47027558,102135967,220565018,

%U 473743833,1012274948,2152271718,4554344649,9593260912,20118418061,42012556671,87375161720,181001416773

%N Expansion of Product_{k>=1} (1 + x^k)^(k*((k-2)^2+k)/2).

%C Weigh transform of A060354.

%H Alois P. Heinz, <a href="/A294959/b294959.txt">Table of n, a(n) for n = 0..2000</a>

%H M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>

%F G.f.: Product_{k>=1} (1 + x^k)^A060354(k).

%F a(n) ~ exp(-2401 * Pi^16 / (3499200000000 * Zeta(5)^3) + 49 * Pi^8 * Zeta(3) / (2700000 * Zeta(5)^2) - 2*Zeta(3)^2 / (25*Zeta(5)) + (-343*Pi^12 / (810000000 * 2^(3/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (750 * 2^(3/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (360000 * 2^(1/5) * 3^(4/5) * 5^(2/5) * Zeta(5)^(7/5)) + (3/2)^(1/5) * Zeta(3) / (5*Zeta(5))^(2/5)) * n^(2/5) - (7*Pi^4 / (180 * 2^(4/5) * 3^(1/5) * (5*Zeta(5))^(3/5))) * n^(3/5) + (3^(2/5) * 5^(6/5) * Zeta(5)^(1/5) / 2^(12/5)) * n^(4/5)) * 3^(1/5) * Zeta(5)^(1/10) / (2^(69/80) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - _Vaclav Kotesovec_, Nov 12 2017

%p g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(binomial(((i-2)^2+i)*i/2, j)*g(n-i*j, i-1), j=0..n/i)))

%p end:

%p a:= n-> g(n$2):

%p seq(a(n), n=0..35); # _Alois P. Heinz_, Nov 12 2017

%t nmax = 32; CoefficientList[Series[Product[(1 + x^k)^(k ((k - 2)^2 + k)/2), {k, 1, nmax}], {x, 0, nmax}], x]

%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 ((d - 2)^2 + d)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]

%Y Cf. A057145, A060354, A294958.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Nov 12 2017