login
Number of compositions (ordered partitions) of 1 into exactly 10*n+1 powers of 1/11.
2

%I #4 Nov 09 2017 20:35:24

%S 1,1,352716,15643738390215,17538231051073300512165,

%T 224099040671253218432160498959100,

%U 20208669423838553069878798723999482271266772,9331135718988942028135354112509213417271737533460581101,17527579661734914837260482461964964314280710461958157215893286079640

%N Number of compositions (ordered partitions) of 1 into exactly 10*n+1 powers of 1/11.

%H Alois P. Heinz, <a href="/A294858/b294858.txt">Table of n, a(n) for n = 0..59</a>

%F a(n) = [x^(11^n)] (Sum_{j=0..10*n+1} x^(11^j))^(10*n+1).

%Y Column k=10 of A294746.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Nov 09 2017