OFFSET
0,3
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 1 No 184.
Index entries for linear recurrences with constant coefficients, signature (9,-31,51,-41,15,-2).
FORMULA
From Colin Barker, Nov 23 2017: (Start)
a(n) = (1/25)*(2^(-1-n)*(-25*2^(1+n) + 75*2^(1+2*n) - 25*(3+sqrt(5))^n - 37*sqrt(5)*(3+sqrt(5))^n + (3-sqrt(5))^n*(-25+37*sqrt(5)) + 20*((3-sqrt(5))^n + (3+sqrt(5))^n)*n)).
a(n) = 9*a(n-1) - 31*a(n-2) + 51*a(n-3) - 41*a(n-4) + 15*a(n-5) - 2*a(n-6) for n>5.
(End)
MAPLE
(1 -8*x +24*x^2 -32*x^3 +19*x^4 -3*x^5)/((1 -x)*(1 -2*x)*(1 -3*x +x^2)^2) ;
taylor(%, x=0, 40) ;
gfun[seriestolist](%) ;
PROG
(PARI) Vec((1 -8*x +24*x^2 -32*x^3 +19*x^4 -3*x^5)/((1 -x)*(1 -2*x)*(1 -3*x +x^2)^2) + O(x^40)) \\ Colin Barker, Nov 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 09 2017
STATUS
approved