login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294817
Number of permutations of [n] avoiding {1324, 2431, 3241}.
1
1, 1, 2, 6, 21, 76, 270, 927, 3074, 9886, 30985, 95064, 286558, 851203, 2497550, 7252494, 20874861, 59630404, 169225518, 477513639, 1340705306, 3747697726, 10435070737, 28954040496, 80087091646, 220897122571, 607726482470, 1668084221742, 4568859998709, 12489795988636
OFFSET
0,3
LINKS
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 1 No 184.
FORMULA
From Colin Barker, Nov 23 2017: (Start)
a(n) = (1/25)*(2^(-1-n)*(-25*2^(1+n) + 75*2^(1+2*n) - 25*(3+sqrt(5))^n - 37*sqrt(5)*(3+sqrt(5))^n + (3-sqrt(5))^n*(-25+37*sqrt(5)) + 20*((3-sqrt(5))^n + (3+sqrt(5))^n)*n)).
a(n) = 9*a(n-1) - 31*a(n-2) + 51*a(n-3) - 41*a(n-4) + 15*a(n-5) - 2*a(n-6) for n>5.
(End)
MAPLE
(1 -8*x +24*x^2 -32*x^3 +19*x^4 -3*x^5)/((1 -x)*(1 -2*x)*(1 -3*x +x^2)^2) ;
taylor(%, x=0, 40) ;
gfun[seriestolist](%) ;
PROG
(PARI) Vec((1 -8*x +24*x^2 -32*x^3 +19*x^4 -3*x^5)/((1 -x)*(1 -2*x)*(1 -3*x +x^2)^2) + O(x^40)) \\ Colin Barker, Nov 23 2017
CROSSREFS
Sequence in context: A148490 A006612 A116769 * A294772 A294818 A116809
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 09 2017
STATUS
approved