OFFSET
0,3
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 1 No 72.
Index entries for linear recurrences with constant coefficients, signature (13,-74,243,-510,715,-678,429,-173,40,-4).
FORMULA
From Colin Barker, Nov 23 2017: (Start)
G.f.: (1 - 12*x + 63*x^2 - 189*x^3 + 358*x^4 - 447*x^5 + 367*x^6 - 192*x^7 + 64*x^8 - 10*x^9) / ((1 - x)^6*(1 - 2*x)^2*(1 - 3*x + x^2)).
a(n) = (1/120)*(3*2^(2-n)*(5*2^(2+n)*(-1+2^n) - (-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5))) + 4*(-73+15*2^(1+n))*n - 120*n^2 - 65*n^3 - 3*n^5).
a(n) = 13*a(n-1) - 74*a(n-2) + 243*a(n-3) - 510*a(n-4) + 715*a(n-5) - 678*a(n-6) + 429*a(n-7) - 173*a(n-8) + 40*a(n-9) - 4*a(n-10) for n>9.
(End)
MAPLE
1+x*(1 -11*x +54*x^2 -152*x^3 +268*x^4 -311*x^5 +237*x^6 -109*x^7 +30*x^8 -4*x^9) /((1-x)^6 *(1-2*x)^2 *(1-3*x+x^2)) ;
taylor(%, x=0, 40) ;
gfun[seriestolist](%) ;
PROG
(PARI) Vec((1 - 12*x + 63*x^2 - 189*x^3 + 358*x^4 - 447*x^5 + 367*x^6 - 192*x^7 + 64*x^8 - 10*x^9) / ((1 - x)^6*(1 - 2*x)^2*(1 - 3*x + x^2)) + O(x^40)) \\ Colin Barker, Nov 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 09 2017
STATUS
approved