login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294747
Number of compositions (ordered partitions) of 1 into exactly n^2+1 powers of 1/(n+1).
2
1, 1, 10, 4245, 216456376, 2713420774885145, 14138484434475011392912026, 46050764886573707269872023694736134925, 131223281654667714701311635640432890136981994039662720, 435699237793484726791774188056400878106883117166142375354233228879800569
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^((n+1)^n)] (Sum_{j=0..n^2+1} x^((n+1)^j))^(n^2+1) for n>0, a(0) = 1.
a(n) = A294746(n,n).
a(n) ~ exp(-1/12) * n^(n^2 - n/2 + 2) / (2*Pi)^((n-1)/2). - Vaclav Kotesovec, Sep 20 2019
EXAMPLE
a(0) = 1: [1].
a(1) = 1: [1/2,1/2].
a(2) = 10 = binomial(5,2): [1/3,1/3,1/9,1/9,1/9], [1/3,1/9,1/3,1/9,1/9], [1/3,1/9,1/9,1/3,1/9], [1/3,1/9,1/9,1/9,1/3], [1/9,1/3,1/3,1/9,1/9], [1/9,1/3,1/9,1/3,1/9], [1/9,1/3,1/9,1/9,1/3], [1/9,1/9,1/3,1/3,1/9], [1/9,1/9,1/3,1/9,1/3], [1/9,1/9,1/9,1/3,1/3].
MAPLE
b:= proc(n, r, p, k) option remember;
`if`(n<r, 0, `if`(r=0, `if`(n=0, p!, 0), add(
b(n-j, k*(r-j), p+j, k)/j!, j=0..min(n, r))))
end:
a:= n-> `if`(n=0, 1, b(n^2+1, 1, 0, n+1)):
seq(a(n), n=0..10);
MATHEMATICA
b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]];
a[n_] := If[n == 0, 1, b[n^2 + 1, 1, 0, n + 1]];
Table[a[n], {n, 0, 10}] (* Jean-François Alcover, May 21 2018, translated from Maple *)
CROSSREFS
Main diagonal of A294746.
Cf. A002522.
Sequence in context: A320983 A316397 A291332 * A199354 A336831 A276241
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 07 2017
STATUS
approved