login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294691
Expansion of Product_{k>=1} 1 / (1 - x^(2*k - 1))^(k*(3*k - 2)).
3
1, 1, 1, 9, 9, 30, 66, 106, 274, 459, 1010, 1862, 3552, 6973, 12446, 24245, 43041, 80372, 144482, 259633, 468047, 822642, 1468714, 2556542, 4493704, 7782441, 13470564, 23204471, 39679759, 67855411, 115004992, 194984378, 328183865, 551595570, 922663665
OFFSET
0,4
LINKS
FORMULA
a(n) ~ exp(Pi * 2^(5/4) / (3*5^(1/4)) * n^(3/4) + Zeta(3) * sqrt(5*n) / (Pi^2 * sqrt(2)) - (5*Zeta(3)^2 / (2*Pi^5) + Pi/24) * (5*n/2)^(1/4) + 25*Zeta(3)^3 / (3*Pi^8) + 2*Zeta(3) / (3*Pi^2) - 1/24) * sqrt(A) / (2^(173/96) * 5^(11/96) * Pi^(1/24) * n^(59/96)), where A is the Glaisher-Kinkelin constant A074962.
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1/(1-x^(2*k-1))^(k*(3*k-2)), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 07 2017
STATUS
approved