login
A294621
Number of partitions of n into generalized heptagonal numbers (A085787).
3
1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 21, 23, 26, 29, 32, 35, 38, 41, 45, 49, 53, 59, 64, 69, 73, 80, 87, 94, 101, 109, 117, 125, 134, 145, 156, 167, 178, 190, 202, 217, 232, 249, 265, 282, 299, 318, 339, 361, 384, 408, 432, 457, 484, 514, 545, 578, 610, 646
OFFSET
0,5
FORMULA
G.f.: Product_{k>=1} 1/((1 - x^(k*(5*k-3)/2))*(1 - x^(k*(5*k+3)/2))).
EXAMPLE
a(8) = 4 because we have [7, 1], [4, 4], [4, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
MATHEMATICA
nmax = 70; CoefficientList[Series[Product[1/((1 - x^(k (5 k - 3)/2)) (1 - x^(k (5 k + 3)/2))), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 05 2017
STATUS
approved