%I #15 Nov 07 2017 08:30:51
%S 1,1,1,1,1,3,1,1,9,6,1,1,33,90,14,1,1,129,2220,1154,25,1,1,513,59178,
%T 264908,17427,56,1,1,2049,1594836,67176362,49163017,309117,97,1,1,
%U 8193,43048770,17181595604,152662625259,13120646934,6285102,198
%N Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1-j*x^j)^(j^(k*j)) in powers of x.
%H Seiichi Manyama, <a href="/A294609/b294609.txt">Antidiagonals n = 0..52, flattened</a>
%F A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(k*d+1+j/d)) * A(n-j,k) for n > 0.
%e Square array begins:
%e 1, 1, 1, 1, 1, ...
%e 1, 1, 1, 1, 1, ...
%e 3, 9, 33, 129, 513, ...
%e 6, 90, 2220, 59178, 1594836, ...
%e 14, 1154, 264908, 67176362, 17181595604, ...
%Y Columns k=0..2 give A006906, A294610, A294611.
%Y Rows n=0-1 give A000012.
%Y Cf. A294605.
%K nonn,tabl
%O 0,6
%A _Seiichi Manyama_, Nov 04 2017