login
A294585
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j^k*x^j)^(j^k).
3
1, 1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 17, 14, 5, 1, 1, 65, 98, 42, 7, 1, 1, 257, 794, 514, 103, 11, 1, 1, 1025, 6818, 7194, 2435, 289, 15, 1, 1, 4097, 60074, 107170, 69475, 12752, 690, 22, 1, 1, 16385, 535538, 1649322, 2177411, 715277, 58849, 1771, 30
OFFSET
0,6
LINKS
FORMULA
A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(k+1+k*j/d)) * A(n-j,k) for n > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
2, 5, 17, 65, 257, ...
3, 14, 98, 794, 6818, ...
5, 42, 514, 7194, 107170, ...
CROSSREFS
Columns k=0..2 give A000041, A266941, A294586.
Rows n=0-1 give A000012.
Sequence in context: A308292 A117396 A125860 * A283674 A294758 A125800
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 03 2017
STATUS
approved