login
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) + 2*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
2

%I #4 Nov 15 2017 17:38:35

%S 1,2,17,37,76,139,245,418,701,1161,1908,3119,5081,8258,13401,21727,

%T 35202,57007,92291,149384,241765,391243,633106,1024451,1657663,

%U 2682224,4340001,7022343,11362466,18384935,29747531,48132600,77880269,126013011,203893428

%N Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) + 2*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

%C The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

%H Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13.

%e a(0) = 1, a(1) = 2, b(0) = 3, so that

%e b(1) = 4 (least "new number")

%e a(2) = a(0) + a(1) + 2*b(0) + 2*b(1) = 17

%e Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, ...)

%t mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;

%t a[0] = 1; a[1] = 3; b[0] = 2;

%t a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] + 2 b[n - 2];

%t b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];

%t Table[a[n], {n, 0, 40}] (* A294560 *)

%t Table[b[n], {n, 0, 10}]

%Y Cf. A001622, A294532.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Nov 15 2017