login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of partial sums of the reciprocals of the decagonal numbers.
4

%I #26 Nov 23 2024 19:36:06

%S 1,10,270,7020,119340,835380,4176900,242260200,888287400,32866633800,

%T 1347531985800,4042595957400,28298171701800,1499803100195400,

%U 28496258903712600,3476543586252937200,3476543586252937200,26653500827939185200,1945705560439560519600,1945705560439560519600,52534050131868134029200

%N Denominators of partial sums of the reciprocals of the decagonal numbers.

%C The corresponding numerators are given by A250551(n+1), n >= 0.

%C The positive decagonal numbers are A001107(k+1) = (k + 1)*(4*k + 1), k >= 0.

%C For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [4,1].

%C The limit of the series is V(4,1) = lim_{n -> oo} V(4,1;n) = log(2) + Pi/6 = 1.216745956158244182... given in A244647.

%D Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193.

%H Robert Israel, <a href="/A294515/b294515.txt">Table of n, a(n) for n = 0..866</a>

%F a(n) = denominator(V(4,1;n)) with V(4,1;n) = Sum_{k=0..n} 1/((k + 1)*(4*k + 1)) = Sum_{k=0..n} 1/A001107(n+1) = (1/3)*Sum_{k=0..n} (4/(4*k + 1) - 1/(k+1)).

%F a(n) = A250550(n+1)/(n+1) [conjecture].

%F In the Koecher reference v_4(1) = (3/4)*V(4,1) = (3/4)*log(2) + Pi/8 = 0.91255946711868313687... .

%e The rationals V(4,1;n), n >= 0, begin: 1, 11/10, 307/270, 8117/7020, 139393/119340, 982381/835380, 4935773/4176900, 287319059/242260200, 1056494083/888287400, 39179109811/32866633800, ...

%e V(4,1;10^4) = 1.216720959 (Maple, 10 digits) to be compared with 1.216745956 from V(4,1) from A244647.

%p map(denom,ListTools:-PartialSums([seq(1/((k+1)*(4*k+1)),k=0..50)])); # _Robert Israel_, Nov 08 2017

%t Denominator@ Accumulate@ Array[1/PolygonalNumber[10, #] &, 23] (* _Michael De Vlieger_, Nov 02 2017 *)

%Y Cf. A001107, A244647, A250550, A250551.

%K nonn,frac,easy

%O 0,2

%A _Wolfdieter Lang_, Nov 02 2017