login
A294458
E.g.f.: Product_{n>=1} (1 - x^(2*n-1))^(1/(2*n-1)).
1
1, -1, 0, -2, 8, -24, 64, -160, 8448, -86912, 509696, -1449216, 44615680, -366395392, 3315376128, -190488356864, 4591008579584, -33244620718080, 86342088982528, -2543409132470272, 136456182420996096, -5644134983026343936, 103753337226615848960
OFFSET
0,4
LINKS
FORMULA
E.g.f.: exp(-Sum_{n>=1} A001227(n) * x^n / n).
a(0) = 1 and a(n) = (-1) * (n-1)! * Sum_{k=1..n} A001227(k)*a(n-k)/(n-k)! for n > 0.
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(-sum(k=1, N, sumdiv(k, d, d%2)*x^k/k))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 31 2017
STATUS
approved