%I #14 Sep 27 2020 18:37:33
%S 1,3,10,22,43,78,136,231,387,641,1053,1721,2803,4555,7391,11981,19409,
%T 31429,50879,82352,133278,215679,349008,564740,913803,1478600,2392462,
%U 3871123,6263648,10134836,16398551,26533456,42932078,69465607,112397760,181863444
%N Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
%C The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. The initial values of each sequence in the following guide are a(0) = 1, a(2) = 3, b(0) = 2, b(1) = 4:
%C A294413: a(n) = a(n-1) + a(n-2) - b(n-1) + 6
%C A294414: a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2)
%C A294415: a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 1
%C A294416: a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n
%C A294417: a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - n
%C A294418: a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2)
%C A294419: a(n) = a(n-1) + a(n-2) + 2*b(n-1) + 2*b(n-2)
%C A294420: a(n) = a(n-1) + a(n-2) + 2*b(n-1) + b(n-2)
%C A294421: a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2)
%C A294422: a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + 1
%C A294423: a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + n
%C A294424: a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - 1
%C A294425: a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - 2
%C A294426: a(n) = a(n-1) + 2*a(n-2) + b(n-1) + b(n-2) - 3
%C Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio.
%H Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13.
%e a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
%e a(2) = a(1) + a(0) + b(1) + b(0) = 6
%e Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 11, 12, 13, ...)
%t mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
%t a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
%t a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2];
%t b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
%t Table[a[n], {n, 0, 40}] (* A294414 *)
%t Table[b[n], {n, 0, 10}]
%Y Cf. A293076, A293765, A022940.
%K nonn,easy
%O 0,2
%A _Clark Kimberling_, Oct 31 2017
%E Definition corrected by _Georg Fischer_, Sep 27 2020