login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1 + Sum_{i>=1} q^(i^2)/Product_{j=1..i} (1 + q^(2*j))).
3

%I #4 Oct 30 2017 18:00:35

%S 1,-1,1,0,-2,3,-2,-1,6,-10,8,2,-19,34,-30,-3,60,-112,106,-2,-188,370,

%T -373,48,586,-1226,1307,-296,-1808,4046,-4546,1430,5516,-13300,15724,

%U -6217,-16626,43566,-54132,25464,49373,-142146,185496,-100306,-143896,461874,-632864,384348,409270,-1494356,2150240

%N Expansion of 1/(1 + Sum_{i>=1} q^(i^2)/Product_{j=1..i} (1 + q^(2*j))).

%C Convolution inverse of the 3rd order mock theta function phi(q) (A053250).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MockThetaFunction.html">Mock Theta Function</a>

%F G.f.: 1/(1 + Sum_{i>=1} q^(i^2)/Product_{j=1..i} (1 + q^(2*j))).

%t nmax = 50; CoefficientList[Series[1/(1 + Sum[q^(i^2)/Product[1 + q^(2 j), {j, 1, i}], {i, 1, nmax}]), {q, 0, nmax}], q]

%Y Cf. A053250, A081360, A294407.

%K sign

%O 0,5

%A _Ilya Gutkovskiy_, Oct 30 2017