login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 8*((9*n + 8)*10^n - 8)/81.
3

%I #24 Aug 19 2018 12:28:02

%S 0,16,256,3456,43456,523456,6123456,70123456,790123456,8790123456,

%T 96790123456,1056790123456,11456790123456,123456790123456,

%U 1323456790123456,14123456790123456,150123456790123456,1590123456790123456,16790123456790123456,176790123456790123456

%N a(n) = 8*((9*n + 8)*10^n - 8)/81.

%H Colin Barker, <a href="/A294329/b294329.txt">Table of n, a(n) for n = 0..900</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (21,-120,100).

%F a(n) = (8/9) * A294327(n) = 8 * A294328(n).

%F From _Colin Barker_, Oct 28 2017: (Start)

%F G.f.: 16*x*(1 - 5*x) / ((1 - x)*(1 - 10*x)^2).

%F a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n>2.

%F (End)

%t LinearRecurrence[{21,-120,100},{0,16,256},20] (* _Harvey P. Dale_, Aug 19 2018 *)

%o (PARI) concat(0, Vec(16*x*(1 - 5*x) / ((1 - x)*(1 - 10*x)^2) + O(x^30))) \\ _Colin Barker_, Oct 28 2017

%Y Cf. A294327, A294328.

%K nonn,easy

%O 0,2

%A _Seiichi Manyama_, Oct 28 2017