%I #7 Sep 27 2018 15:06:40
%S 24,8709120,759246199455744000,92358580167818066670290731008000000,
%T 57303733451473984666829812178837795780510487674880000000000
%N a(n) = Product_{k=0..n} (5*k + 4)!.
%F a(n) ~ 2^(n/2 + 1/5) * 5^(5*n^2/2 + 7*n + 29/6) * n^(5*n^2/2 + 7*n + 281/60) * Pi^(n/2 + 1/10) * Gamma(1/5)^(3/5) * Gamma(2/5)^(1/5) / (A^(1/5) * (1 + sqrt(5))^(1/10) * exp(15*n^2/4 + 7*n-1/60)), where A is the Glaisher-Kinkelin constant A074962.
%F A268506(n) * A294323(n) * A294324(n) * A294325(n) * A294326(n) = A000178(5*n+4).
%t Table[Product[(5*k + 4)!, {k, 0, n}] , {n, 0, 10}]
%t FoldList[Times,(5*Range[0,5]+4)!] (* _Harvey P. Dale_, Sep 27 2018 *)
%Y Cf. A268506, A294323, A294324, A294325.
%K nonn
%O 0,1
%A _Vaclav Kotesovec_, Oct 28 2017