Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jan 06 2018 18:44:33
%S 1,1,1,1,1,1,2,1,1,1,3,1,1,1,1,3,1,2,1,3,1,1,1,1,1,5,2,1,1,1,3,1,1,1,
%T 3,1,1,4,1,1,1,5,2,1,1,1,1,1,5,2,1,3,1,1,3,1,1,1,1,1,1,7,3,1,2,1,3,1,
%U 1,1,1,3,1,5,2,1,1,1,7,6,3,1,1,1,1,5
%N Irregular triangle read by rows: T(n, m) = total number of times the different values appear in row n of A280269, where 0 <= m <= A280274(n).
%C The numbers i in A162306(n) divide n^k with k >= 0; these k are listed in row n of A280269.
%C Row 1 = 1 and T(n, 0) = 1 for all n, since 1 is the empty product and divides n^0.
%C Row p = 1, 1, (row length = 2) since the only divisors of p are 1 and p; 1 | p^0, and p | p^1.
%C Row p^e = 1, e, since the only numbers in A162306(p^e) are 1 and p^k for 1 <= k <= e.
%C Row length of a(n) > 2 for n with omega(n) > 1.
%C Total of row n = A010846(n).
%C Sum of terms of T(n, m) with m <= 1 in row n = A000005(n).
%C Sum of terms of T(n, m) with m > 1 = A243822(n).
%C Terms in row n of A294306 start at 1, generally quickly rise to a maximum, then gradually decline at m = A280274(n).
%H Michael De Vlieger, <a href="/A294306/b294306.txt">Table of n, a(n) for n = 1..11355</a> (rows 1 <= n <= 2000).
%H Michael De Vlieger, <a href="/A294306/a294306.txt">A294306 and indices of records in A294306</a>.
%e Row n of A280269(10) = 0, 1, 2, 1, 3, 1, corresponding to A162306(10) = 1, 2, 4, 5, 8, 10, since 1 | 10^0, 2 | 10^1, 4 | 10^2, 5 | 10^1, 8 | 10^3, and 10 | 10^1. There is 1 zero, 3 ones, 1 two, and 1 three, thus a(10) = 1, 3, 1, 1. sum(a(10)) = A010846(10) = 6. Length of a(10) = A280274(10) + 1 = 4.
%e Triangle begins:
%e 1: 1
%e 2: 1 1
%e 3: 1 1
%e 4: 1 2
%e 5: 1 1
%e 6: 1 3 1
%e 7: 1 1
%e 8: 1 3
%e 9: 1 2
%e 10: 1 3 1 1
%e 11: 1 1
%e 12: 1 5 2
%e 13: 1 1
%e 14: 1 3 1 1
%e 15: 1 3 1
%e 16: 1 4
%e 17: 1 1
%e 18: 1 5 2 1 1
%e 19: 1 1
%e 20: 1 5 2
%e ...
%t Table[Tally[#][[All, -1]] &@ Map[SelectFirst[Range[0, Floor@ Log2@ n], Function[k, Divisible[n^k, #]]] &, Select[Range@ n, PowerMod[n, Floor@ Log2@ n, #] == 0 &]], {n, 32}] // Flatten (* _Michael De Vlieger_, Oct 30 2017 *)
%Y Cf. A000005, A010846, A162306, A243822, A280269, A280274.
%K nonn,tabf
%O 1,7
%A _Michael De Vlieger_, Oct 30 2017