login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294280
a(n) = least positive k such that omega(n+k) > max(omega(n), omega(k)), where omega(m) = A001221(m), the number of distinct primes dividing m.
1
1, 4, 3, 2, 1, 24, 3, 2, 1, 20, 1, 18, 1, 16, 15, 2, 1, 12, 1, 10, 9, 8, 1, 6, 1, 4, 1, 2, 1, 180, 2, 1, 9, 8, 7, 6, 1, 4, 3, 2, 1, 168, 1, 16, 15, 14, 1, 12, 1, 10, 9, 8, 1, 6, 5, 4, 3, 2, 1, 150, 1, 4, 3, 1, 1, 144, 1, 2, 1, 140, 1, 6, 1, 4, 3, 2, 1, 132, 1
OFFSET
1,2
COMMENTS
For any n > 0, a(n) <= n * (A053669(n) - 1).
Apparently, a(n) = n * (A053669(n) - 1) iff n belongs to A077011.
a(n) = 1 iff omega(n) < omega(n+1).
a(p) = 1 for any prime power p not in A006549.
The scatterplot of the sequence shows segments of slope -1, corresponding to frequent values of n+a(n); these segments correspond to the strands in the plot of the ordinal transform of n+a(n) (see plots in Links section).
EXAMPLE
For n=2:
- omega(2+1) = 1 = omega(2),
- omega(2+2) = 1 = omega(2),
- omega(2+3) = 1 = omega(2),
- omega(2+4) = 2 > max(omega(2), omega(4)) = 1,
- hence, a(2) = 4.
PROG
(PARI) a(n) = my (on=omega(n)); for (k=1, oo, if (omega(n+k) > max(on, omega(k)), return (k)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Oct 26 2017
STATUS
approved