

A294231


Numbers k such that (56*10^k + 367)/9 is prime.


0



0, 1, 3, 6, 7, 12, 31, 33, 997, 1134, 3253, 3462, 6154, 9345, 10558, 13251, 15169, 18511, 19219, 22476, 25536, 31399, 35997, 51793, 124735
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

For k>1, numbers such that the digit 6 followed by k2 occurrences of the digit 2 followed by the digits 63 is prime (see Example section).
a(26) > 2*10^5.


LINKS

Table of n, a(n) for n=1..25.
Makoto Kamada, Factorization of nearrepdigitrelated numbers.
Makoto Kamada, Search for 62w63.


EXAMPLE

3 is in this sequence because (56*10^3 + 367)/9 = 6263 is prime.
Initial terms and primes associated:
a(1) = 0, 47;
a(2) = 1, 103;
a(3) = 3, 6263;
a(4) = 6, 6222263;
a(5) = 7, 62222263; etc.


MATHEMATICA

Select[Range[0, 100000], PrimeQ[(56*10^# + 367)/9] &]


CROSSREFS

Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
Sequence in context: A333002 A333000 A175048 * A280873 A293437 A282354
Adjacent sequences: A294228 A294229 A294230 * A294232 A294233 A294234


KEYWORD

nonn,more,hard


AUTHOR

Robert Price, Oct 25 2017


EXTENSIONS

a(25) from Robert Price, Jun 06 2019


STATUS

approved



