login
Numbers k such that (17*10^k + 43)/3 is prime.
0

%I #13 May 26 2024 15:23:42

%S 1,4,5,6,7,12,23,34,160,719,725,2568,3095,3520,3582,3791,4198,5236,

%T 15445,26431,33120,36028

%N Numbers k such that (17*10^k + 43)/3 is prime.

%C For k > 1, numbers k such that the digit 5 followed by k-2 occurrences of the digit 6 followed by the digits 81 is prime (see Example section).

%C a(23) > 2*10^5.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 56w81</a>.

%e 4 is in this sequence because (17*10^4 + 43)/3 = 56681 is prime.

%e Initial terms and associated primes:

%e a(1) = 1, 71;

%e a(2) = 4, 56681;

%e a(3) = 5, 566681;

%e a(4) = 6, 5666681;

%e a(5) = 7, 56666681; etc.

%t Select[Range[0, 100000], PrimeQ[(17*10^# + 43)/3] &]

%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.

%K nonn,more,hard

%O 1,2

%A _Robert Price_, Oct 25 2017