Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Oct 02 2019 01:54:15
%S 2,2,2,2,2,4,4,8,8,12,16,32,36,60,72,128,136,244,292,508,576,972,1120,
%T 1992,2272,3948,4588,7924,9056,15764,18132,31832,36444,63216,72808,
%U 126456,145332,253112,290968,507096,581952,1012312,1163452,2026504,2327844,4051424,4656388
%N Length of period of continued fraction expansion of sqrt(3*2^n).
%C Lim {n->inf} a(2n)/2^n = 0.555...
%C Lim {n->inf} a(2n+1)/2^n = 0.966...
%C It seems that Lim {n->inf} a(2n+1)/a(2n) = sqrt(3).
%C It seems that Lim {n->inf} a(n)/2^n = (Lim {n -> inf} A064932(n)/3^n)/2.
%H Chai Wah Wu, <a href="/A294226/b294226.txt">Table of n, a(n) for n = 0..80</a> (n = 0..46 from A.H.M. Smeets)
%F a(n) = A003285(A007283(n)). - _Michel Marcus_, Oct 02 2019
%t Array[Length@ Last@ ContinuedFraction@ Sqrt[3*2^#] &, 47, 0] (* _Michael De Vlieger_, Oct 25 2017 *)
%o (Python, for odd n)
%o m,p,q = 0,6,2
%o tl,nl,tb,nb = 3,1,2,1
%o while nl < 10**100000000:
%o ....tl = tl * nb + tb * nl
%o ....nl = 2 * nl * nb
%o ....nb = tl
%o ....tb = p * nl
%o tl = tl *nb + tb * nl
%o nl = 2 * nl * nb
%o tel,noe = tl,nl
%o while m >= 0:
%o ....tl = tel*q**m
%o ....nl = noe
%o ....a0 = tl//nl
%o ....t = 0
%o ....an = a0
%o ....while an != 2*a0:
%o ........tl = tl - an*nl
%o ........tl, nl = nl, tl
%o ........an = tl//nl
%o ........t = t + 1
%o ....print(2*m+1,t)
%o ....m = m+1
%Y Cf. A003285, A007283, A059927, A064932, A293028.
%K nonn
%O 0,1
%A _A.H.M. Smeets_, Oct 25 2017