login
Positive integers k such that there exists a sequence of k consecutive natural numbers m - k + 1, m - k + 2, ..., m with m >= 2*k such that none of the numbers of the sequence is a divisor of binomial(m, k).
0

%I #12 Feb 27 2018 09:19:51

%S 15,21,22,33,35

%N Positive integers k such that there exists a sequence of k consecutive natural numbers m - k + 1, m - k + 2, ..., m with m >= 2*k such that none of the numbers of the sequence is a divisor of binomial(m, k).

%D R. K. Guy, Unsolved Problems in Number Theory, Springer, 2013, p. 137.

%D W. Sierpiński, Teoria liczb, cz. II, PWN, Warsaw, 1959, pp. 47-48.

%H A. Schinzel, <a href="http://matwbn.icm.edu.pl/ksiazki/cm/cm5/cm5128.pdf">Sur un problème de P. Erdos</a>, Colloquium Mathematicum 5 (1958), pp. 198-204.

%K nonn,more

%O 1,1

%A _Arkadiusz Wesolowski_, Feb 10 2018