OFFSET
1,2
COMMENTS
Sum of the slopes of the tangent lines along the left side of the parabola b(x) = 2*n*x-x^2 at squarefree values of x such that 2n-x is prime for x in 0 < x <= n. For example, d/dx 2*n*x-x^2 = 2n-2x. So for a(6), the squarefree values of x that make 12-x prime are x=1,5 and so a(6) = 12-2*1 + 12-2*5 = 10 + 2 = 12. - Wesley Ivan Hurt, Mar 25 2018
EXAMPLE
For n = 7, 14 can be partitioned into a prime and a smaller squarefree number in two ways: 13 + 1 and 11 + 3, so a(7) = (13 - 1) + (11 - 3) = 20. - Michael B. Porter, Mar 27 2018
MATHEMATICA
Table[2*Sum[(n - i) (PrimePi[2 n - i] - PrimePi[2 n - i - 1]) MoebiusMu[i]^2, {i, n}], {n, 80}]
PROG
(PARI) a(n) = 2 * sum(i=1, n, (n-i)*isprime(2*n-i)*issquarefree(i)); \\ Michel Marcus, Mar 26 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 22 2017
STATUS
approved