Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 May 20 2018 13:54:12
%S 1,1,3,4,8,10,17,20,30,35,49,56,75,84,108,120,150,165,202,220,264,286,
%T 338,364,425,455,525,560,640,680,771,816,918,969,1083,1140,1267,1330,
%U 1470,1540,1694,1771,1940,2024,2208,2300,2500,2600,2817,2925,3159,3276,3528,3654,3925
%N a(n) is the number of self-symmetric anonymous and neutral equivalence classes of preference profiles with 3 alternatives and n agents (IANC model).
%H Colin Barker, <a href="/A294085/b294085.txt">Table of n, a(n) for n = 0..1000</a>
%H A. Karpov, <a href="https://publications.hse.ru/mirror/pubs/share//direct/217868605">An Informational Basis for Voting Rules</a>, NRU Higher School of Economics. Series WP BRP "Economics/EC". 2018. No. 188
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1,1,-1,-2,2,1,-1).
%F a(n) = 2*A005513(n-6) - A037240(n).
%F If n is odd, a(n) = (n+5)*(n+3)*(n+1)/48;
%F If n is even, a(n) = ceiling((n+4)^2*(n+2)/48).
%F From _Colin Barker_, May 11 2018: (Start)
%F G.f.: (1 + x^3 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)).
%F a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) + a(n-6) - a(n-7) - 2*a(n-8) + 2*a(n-9) + a(n-10) - a(n-11) for n>10.
%F (End)
%o (PARI) Vec((1 + x^3 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)) + O(x^60)) \\ _Colin Barker_, May 11 2018
%Y Cf. A037240, A005513.
%Y For odd n, it is A000292.
%K nonn,easy
%O 0,3
%A _Alexander Karpov_, Apr 12 2018