OFFSET
1,4
COMMENTS
Sum of the slopes of the tangent lines along the left side of the parabola b(x) = n*x-x^2 at squarefree values of x for x in 0 < x <= floor(n/2). For example, d/dx n*x-x^2 = n-2x. So for a(11), x=1,2,3,5 and so 11-2*1 + 11-2*2 + 11-2*3 + 11-2*5 = 9 + 7 + 5 + 1 = 22. - Wesley Ivan Hurt, Mar 24 2018
LINKS
FORMULA
a(n) = Sum_{i=1..floor(n/2)} (n - 2i) * mu(i)^2, where mu is the Möbius function (A008683).
EXAMPLE
For n = 9, there are three partitions of 9 into a number and a smaller squarefree number, 8 + 1, 7 + 2, and 6 + 3. So a(9) = (8 - 1) + (7 - 2) + (6 - 3) = 15. - Michael B. Porter, Mar 29 2018
MAPLE
with(numtheory):
seq(add((n-2*i)*mobius(i)^2, i=1..floor(n/2)), n=1..60); # Muniru A Asiru, Mar 24 2018
MATHEMATICA
Table[Sum[(n - 2 i) MoebiusMu[i]^2, {i, Floor[n/2]}], {n, 80}]
PROG
(PARI) for(n=1, 50, print1(sum(k=1, floor(n/2), (n-2*k)*moebius(k)^2), ", ")) \\ G. C. Greubel, Mar 27 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 22 2017
STATUS
approved