Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Nov 25 2019 02:57:22
%S 0,0,0,0,1,2,4,6,8,10,13,16,19,22,26,30,34,38,42,46,50,54,59,64,69,74,
%T 80,86,92,98,104,110,116,122,129,136,143,150,158,166,174,182,190,198,
%U 206,214,223,232,241,250,259,268,277,286,295,304,313,322,332
%N Sum of the differences of the larger and smaller parts in the partitions of n into two parts with the smaller part prime.
%C Sum of the slopes of the tangent lines along the left side of the parabola b(x) = n*x-x^2 at prime values of x for x in 0 < x <= floor(n/2). For example, d/dx n*x-x^2 = n-2x. So for a(11), x=2,3,5 and so 11-2*2 + 11-2*3 + 11-2*5 = 7 + 5 + 1 = 13. - _Wesley Ivan Hurt_, Mar 24 2018
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) = Sum_{i=1..floor(n/2)} (n - 2i)*A010051(i).
%F First differences are A056172. - _David A. Corneth_, Apr 06 2018
%F a(n) = Sum_{i=1..n-1} pi(floor(i/2)), where pi(n) = A000720(n). - _Ridouane Oudra_, Nov 24 2019
%e The partitions of n = 11 into a number and a smaller prime number are 9 + 2, 8 + 3, and 6 + 5, so a(11) = (9 - 2) + (8 - 3) + (6 - 5) = 13. - _Michael B. Porter_, Apr 06 2018
%p with(numtheory): seq(add(pi(floor(i/2)), i=1..n-1), n=1..100); # _Ridouane Oudra_, Nov 24 2019
%t Table[Sum[(n - 2 i) (PrimePi[i] - PrimePi[i - 1]), {i, Floor[n/2]}], {n, 60}]
%o (PARI) a(n) = sum(i=1, n\2, (n - 2*i)*isprime(i)); \\ _Michel Marcus_, Mar 24 2018
%o (PARI) a(n) = my(res = 0); forprime(p = 2, n >> 1, res += (n - p << 1)); res \\ _David A. Corneth_, Apr 06 2018
%Y Cf. A010051, A056172, A294022, A000720.
%K nonn,easy
%O 1,6
%A _Wesley Ivan Hurt_, Oct 21 2017