login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of same-trees whose leaves are the parts of the integer partition with Heinz number n.
3

%I #14 Sep 24 2018 08:54:07

%S 0,1,1,1,1,0,1,1,1,0,1,2,1,0,0,2,1,0,1,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0,

%T 0,3,1,0,0,2,1,0,1,0,0,0,1,3,1,0,0,0,1,0,0,0,0,0,1,0,1,0,2,3,0,0,1,0,

%U 0,0,1,0,1,0,0,0,0,0,1,0,2,0,1,4,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,1,8

%N Number of same-trees whose leaves are the parts of the integer partition with Heinz number n.

%C By convention a(1) = 0.

%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

%H Antti Karttunen, <a href="/A294019/b294019.txt">Table of n, a(n) for n = 1..65537</a>

%F A281145(n) = Sum_{i=1..A000041(n)} a(A215366(n,i)).

%F a(p^n) = A006241(n) for any prime p and exponent n >= 1. - _Antti Karttunen_, Sep 22 2018

%e The a(108) = 8 same-trees: ((22)(2(11))), ((22)((11)2)), ((2(11))(22)), (((11)2)(22)), (222(11)), (22(11)2), (2(11)22), ((11)222).

%e From _Antti Karttunen_, Sep 22 2018: (Start)

%e For 12 = prime(1)^2 * prime(2)^1, we have the following two cases: 2(11) and (11)2, thus a(12) = 2.

%e For 36 = prime(1)^2 * prime(2)^2, we have the following cases: (11)22, 2(11)2, 22(11), thus a(36) = 3.

%e For 144 = prime(1)^4 * prime(2)^2, we have the following 14 cases: (1111)(22), (22)(1111); ((11)(11))(22), (22)((11)(11)); (11)(11)22, (11)2(11)2, (11)22(11), 2(11)2(11), 2(11)(11)2, 22(11)(11); ((11)2)(11(2)), ((11)2)(2(11)), (2(11))((11)2), (2(11))(2(11)), thus a(144) = 14.

%e For n = 8775 = 3^3 * 5^2 * 13^1 = prime(2)^3 * prime(3)^2 * prime(6)^1, we have the following six cases: (222)(33)6, (222)6(33), (33)(222)6, (33)6(222), 6(222)(33), 6(33)(222), thus a(8775) = 6.

%e (End)

%t nn=120;

%t ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];

%t tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];

%t qci[y_]:=qci[y]=If[Length[y]===1,1,Sum[Times@@qci/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,SameQ@@Total/@#]&]}]];

%t qci/@ptns

%o (PARI)

%o A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }

%o productifbalancedfactorization(v) = if(!#v, 1, my(pw=A056239(v[1]), m=1); for(i=1,#v,if(A056239(v[i])!=pw,return(0), m *= A294019(v[i]))); (m));

%o A294019aux(n, m, facs) = if(1==n, productifbalancedfactorization(Vec(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A294019aux(n/d, m, newfacs))); (s));

%o A294019(n) = if(1==n,0,if(isprime(n),1,A294019aux(n, n-1, List([]))));

%o \\ A memoized implementation:

%o map294019 = Map();

%o A294019(n) = if(1==n,0,if(isprime(n),1,if(mapisdefined(map294019,n), mapget(map294019,n), my(v=A294019aux(n, n-1, List([]))); mapput(map294019,n,v); (v)))); \\ _Antti Karttunen_, Sep 22 2018

%Y Cf. A000005, A000041, A000720, A001222, A006241, A056239, A063834, A196545, A215366, A273873, A281145, A289501, A296150, A299200, A299201, A299202, A299203, A294018, A294080.

%K nonn

%O 1,12

%A _Gus Wiseman_, Feb 07 2018