login
Numbers k such that (436*10^k - 13)/9 is prime.
0

%I #12 May 25 2024 19:38:58

%S 0,5,8,9,12,39,68,78,98,200,218,359,1064,1127,1355,2868,4940,7236,

%T 12050,24708,47214,52683

%N Numbers k such that (436*10^k - 13)/9 is prime.

%C For k > 1, numbers k such that the digits 48 followed by k-1 occurrences of the digit 4 followed by the digit 3 is prime (see Example section).

%C a(23) > 2*10^5.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 484w3</a>.

%e 5 is in this sequence because (436*10^5 - 13)/9 = 4844443 is prime.

%e Initial terms and associated primes:

%e a(1) = 0, 47;

%e a(2) = 5, 4844443;

%e a(3) = 8, 4844444443;

%e a(4) = 9, 48444444443;

%e a(5) = 12, 48444444444443; etc.

%t Select[Range[0, 100000], PrimeQ[(436*10^# - 13)/9] &]

%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.

%K nonn,more,hard

%O 1,2

%A _Robert Price_, Oct 19 2017