Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Nov 25 2023 07:53:11
%S 0,1,1,0,1,0,1,1,1,-1,1,1,1,1,0,0,1,0,1,1,2,-1,1,0,0,1,1,1,1,0,1,1,0,
%T -1,1,1,1,1,2,-1,1,0,1,1,0,-1,1,1,2,1,0,1,1,0,-1,1,2,-1,1,0,1,1,2,0,1,
%U 0,1,1,0,-1,1,0,1,1,1,1,1,0,1,1,1,-1,1,2,-1,1,0,-1,1,0,3,1,2,-1,1,0,1,1,0,0,1,0,1,1,0
%N Number of proper divisors of the form 3k+1 minus number of proper divisors of the form 3k+2.
%H Antti Karttunen, <a href="/A293899/b293899.txt">Table of n, a(n) for n = 1..20000</a>
%F When n = 3k, a(n) = A002324(n), when n = 3k+1, a(n) = A002324(n) - 1, when n = 3k+2, a(n) = A002324(n) + 1.
%F a(n) = A002324(n) - A010872(n) (mod 3).
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(3)) = 0.604599... (A073010). - _Amiram Eldar_, Nov 25 2023
%t Table[DivisorSum[n, 1 &, And[Mod[#, 3] == 1, # != n] &] - DivisorSum[n, 1 &, And[Mod[#, 3] == 2, # != n] &], {n, 105}] (* _Michael De Vlieger_, Nov 08 2017 *)
%t Table[Total[Which[Mod[#,3]==1,1,Mod[#,3]==2,-1,True,0]&/@Most[ Divisors[ n]]],{n,110}] (* _Harvey P. Dale_, Nov 26 2021 *)
%o (PARI)
%o A293895(n) = sumdiv(n,d,(d<n)*(1==(d%3)));
%o A293896(n) = sumdiv(n,d,(d<n)*(2==(d%3)));
%o A293899(n) = (A293895(n) - A293896(n));
%Y Cf. A002324, A010872, A073010, A293895, A293896.
%K sign,easy
%O 1,21
%A _Antti Karttunen_, Nov 06 2017