%I #19 Sep 08 2022 08:46:20
%S 1,2,4,6,4,7,7,4,3,5,7,2,9,8,1,5,8,4,1,8,9,1,0,0,4,2,4,8,7,4,8,1,5,1,
%T 8,3,9,9,6,1,0,5,5,3,0,0,0,3,3,7,6,4,1,7,7,9,6,8,4,5,1,9,3,3,5,4,4,5,
%U 6,4,4,5,7,3,4,3,7,8,0,5,1,4,4,8,2,1,6,6,2,4,3,8,7,9,0,6,9,7,5,6,5,2,6,1,7
%N Decimal expansion of log(3)/log(1 + sqrt(2)).
%C Fractal dimension of the frontier of the Fibonacci word fractal.
%H G. C. Greubel, <a href="/A293812/b293812.txt">Table of n, a(n) for n = 1..10000</a>
%H Alexis Monnerot-Dumaine, <a href="https://hal.archives-ouvertes.fr/hal-00367972/">The Fibonacci Word Fractal</a>, HAL-00367972, February 2009, section 5.2.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%e 1.24647743572981584189100424874815183996105530003376417796845193354456...
%p evalf(log(3)/log(1+sqrt(2)),110); # _Muniru A Asiru_, Oct 11 2018
%t RealDigits[Log[3]/Log[1 + Sqrt[2]], 10, 100][[1]] (* _G. C. Greubel_, Oct 10 2018 *)
%o (Magma) SetDefaultRealField(RealField(105)); n:=Log(1+Sqrt(2),3); Reverse(Intseq(Floor(10^104*n)));
%o (PARI) log(3)/log(1+sqrt(2))
%Y Equals A002391 / A091648.
%K nonn,cons
%O 1,2
%A _Arkadiusz Wesolowski_, Oct 16 2017